Source Link Privacy.
Tarlogic Security has detected a backdoor in the ESP32, a microcontroller that enables WiFi and Bluetooth connection and is present in millions of mass-market IoT devices. Exploitation of this backdoor would allow hostile actors to conduct impersonation attacks and permanently infect sensitive devices such as mobile phones, computers, smart locks or medical equipment by bypassing code audit controls.
Update: The ESP32 “backdoor” that wasn’t.
welp, TL;DR from comments says its fear mongering at best, physical access required right?
Code execution required lmao
It allows the takeover of devices!
How?
By already having taken over the device.
Wtf is this reporting
Babe, wake up its time for your china fear mongering news
Please update the title of this post to mention the update
How so?
You can edit post titles as well as content (even images!) on Lemmy.
Idk maybe specify that it was determined to not be a backdoor. Right now it reads as anti-china fear mongering.
Thank you, I keep getting down voted because I said the same, but obviously other get it. Appreciate you and the sanity check!
Could be propaganda as well - why not scare the monkeys with the bad Chinese? Without ESPs the market is so much easier to control.
Note:I use both the ES8266ex and different ESP32s in my projects.
This isn’t a backdoor. Just a company trying to make a name for themselves by sensationalizing a much smaller discovery.
Seriously this. Every single IC which has digital logic contains some number of undocumented test commands used to ensure it meets all the required specifications during production. They’re not intended to be used for normal operation and almost never included in datasheets.
If anyone’s ever followed console emulator development, they know those undocumented commands are everywhere. There’s still people finding new ones for the N64 hardware
Edit: I should say undocumented behavior, not necessarily new commands
This sounds like there are some undocumented opcodes on the HCI side – the Host Computer Interface – not the wireless side. By itself, it’s not that big a deal. If someone can prove that there’s some sort of custom BLE packet that gives access to those HCI opcodes wirelessly, I’d be REALLY concerned.
But if it’s just on the host side, you can only get to it if you’ve cracked the box and have access to the wiring. If someone has that kind of access, they’re likely to be able to flash their own firmware and take over the whole device anyway.
Not sure this disclosure increases the risk any. I wouldn’t start panicking.
So explained to me, a tech illiterate in comparison, this is China bad scaremongering?
‘Backdoor’ sounds malicious with intent.Pull up a chair and pour yourself a stiff beverage…
TLDR: Don’t Panic.
If you have a regular old processor (MCU) and want to give it wireless capability, you can buy a wireless chip and stick it next to the processor, then have the MCU talk to it through a wired connection (typically UART or SPI). Think of it as the old ATDT commands that had your PC control your old screeching modems.
To standardize this communication protocol, folks came up with the Host Controller Interface (HCI) so you didn’t have to reinvent that protocol for every new chip. This was handy for people on the MCU side, since they could write firmware that worked with any wireless chip out there, and could swap out for a cheaper/faster one with minimal change.
Fast forward to the era of integrated MCU+wireless, where you had a little ARM or other lightweight processor plus a little radio, and the processor could run programs in a high-level API that abstracted out the low level wireless stuff. Plus, you could use the same radio for multiple wireless protocols, like BLE, wifi, ANT, etc. Nordic and TI were early adopters of this method.
Typically, it was the vendor’s own processor talking to their own wireless module, but they still implemented the full HCI interface and let it be accessed externally. Why? So if your design needed an extra beefy processor and used the MCU+wireless chip as a simple communication module, this would still work. The teeny MCU could be used to run something extra in parallel, or it could just sit idle. A typical example could be a laptop or cell phone. The little MCU is too small for everything else, so you pair it with a big chip and the big chip drives the little chip through HCI.
Sure, it would be cheaper if you just went with a basic ‘dumb’ wireless chip, as folks from CSR, Broadcom, and Dialog kept pointing out. But the market demanded integrated chips so we could have $10 activity trackers, fancy overpriced lightbulbs, and Twerking Santas (https://www.amazon.com/twerking-santa-claus/s?k=twerking+santa+claus).
For integrated MCU+wireless chips, most vendors didn’t release the super low-level firmware that ran between them. There was no need. It was internal plumbing. They exposed SDKs so you could control the wireless chip, or high-level Bluetooth/wifi APIs so you could connect and talk to the outside world in a few lines of code. These SDKs were unique to each vendor (like Nordic’s nRF Connect library, or TI’s SimpleLink SDK).
Then along came Espressif out of Shanghai, China with a combo chip (ESP8266) that offered processor + wifi and was so cheap and easy to program that it took the hobbyist market by storm. Oh, god… so many LED light strips, perfect for Christmas and blinky EDM lightup outfits (hello, Adafruit: https://www.adafruit.com/category/65).
Fast forward and Espressif drops the ESP32. A bigger, faster Tensilica Xtensa processor, with built-in flash storage, plus wifi, Bluetooth, and BLE in one place. Plus lots of peripherals, busses, and IO pins. Also, running FreeRTOS and eventually Arduino SDKs, and MicroPython. All for less than $5! It took off like a rocket. So many products. Plus, you could run them as little webservers. Who doesn’l love a little webserver in their pocket?
It’s gone through a few variations, including swapping out the Tensilica with an open-source RISC-V MCU, but otherwise it’s a massive seller and the gateway drug for most IoT/Smarthome nerds.
So along come these Tarlogic researchers, looking to build a direct USB to bluetooth library. This way, you can drive the wireless from, say Linux, directly. There are already BLE to USB stacks, but this one is giving access at the HCI level, in a C library. Handy if you’re doing research or developing drivers, but not the sort of thing your typical DIY person needs.
As part of their process, the researchers decide to dump the really low level ESP32 firmware and reverse engineer it.
A typical HCI implementation is a giant event loop that handles HCI opcodes and parameters. Host wants to talk to the outside world, it sets up some registers, configures the unique MAC address, then opens a channel and starts sending/receiving (hopefully without the modem screeching tones). There are typical packet encoders and decoders, multiple ISO/TCP layers, and the sort of thing that most people assume somebody else has gotten right.
For fancier implementations, there may be interrupt or DMA support. Sometimes, there’s a multi-tasking part under the hood so they can time-slice between wifi, bluetooth, and ble (aka Fusion or Coexistence support). Not that you should care. The internals of this stuff is usually nobody’s business and the vendors just include a binary blob as part of their SDK that handles things. The host systems just talk HCI. The wireless side talks HCI on the wired side, and wireless on the radio side. Everyone’s happy.
In the process of reverse engineering the low-level HCI blob, these researchers found a few extra undocumented HCI opcodes. They’re not sure what they’re for, but according to their presentation (https://www.documentcloud.org/documents/25554812-2025-rootedcon-bluetoothtools/) if my super rusty Spanish holds up, it has to do with setting MAC addresses and handling low-level Link-Level Control Protocol communications (https://www.ellisys.com/technology/een_bt10.pdf).
Now in an of itself, this is no big deal. ESP32s already let you easily set your own temporary MAC address (https://randomnerdtutorials.com/get-change-esp32-esp8266-mac-address-arduino/), so there has to be a way to override the manufacturer one. And LLCP management is a totally geeky low-level thing that the MCU needs when handling wireless packets. There are perfectly good reasons why the opcodes would be there and why Espressif may not have documented them (for example, they could be used only during manufacturing QA).
So the original presentation is a teeny bit of an exaggeration. Yes, the opcodes exists. But are they nefarious? Should we stick all our ESP32s inside Faraday cages? Is this a secret plan for the CCP to remotely control our lights and plunge the world into chaos?
As I said before, ONLY if there’s a secret as-yet-undiscovered wireless handshake that gives remote wireless access to these (or really, pretty much any other published HCI opcode). That presentation most definitely doesn’t claim that.
To see if there is a REAL backdoor, you should wait for an analysis from fine professional wireless debugging vendors like Ellisys (starting models run $30K and up), Frontline, or Spanalytics.
Incidentally, Tarlogic, the group that put out that paper have their own BLE analyzer product (https://www.tarlogic.com/es/productos/analizador-bluetooth-le/). They look to know their stuff, so they should know better than putting out clickbait-y hair-on-fire reports. But come on, who can resist a good CCP/backdoor headline? Will media run with this and blow it out of proportion? No way!
If you’ve read this far, you must safely be on your third drink or the edible’s just kicked in. Stop panicking, and wait until the pro sniffer and Bluetooth forum people give their opinions.
If it turns out there is an actual WIRELESS backdoor, then by all means, feel free to panic and toss out all your Smarthome plugs. Go ahead and revert to getting up and flicking on your light switch like a peasant. Have a sad, twerk-free Christmas.
But over a few undocumented HCI opcodes? Have another drink and relax.
Happy Sunday.
PS: controversy already up on wikipedia: https://en.m.wikipedia.org/wiki/ESP32
PPS: you may want to stock up on ESP32s for your light-up Christmas light project. Don’t be surprised if Espressif gets smacked with some hard tariffs or an outright ban, based on these ragebait headlines 🤷🏻♂️
Edit: DarkMentor offers a little more detail on the nature of the opcodes: https://darkmentor.com/blog/esp32_non-backdoor/
what a fantastic write up. thank you so much for taking the time <3
This is a very good comment. I’d give you Lemmy Gold if such a thing existed. Thanks for posting it!
The article is a security company trying to hype their company with a theoretical attack that currently has no hypothetical way to be abused
The article has an update now fixing the wording to “hidden feature” but, spoilers, every BT device has vendor specific commands.
The documentation of the part just wasn’t complete and this companies “fuzzing” tool found some vendor commands that weren’t in the data sheet
The China part just came from OP
At this point I welcome them to come through.
Come through with what though?
Idk what they can do with my data from my many Bluetooth devices so they are welcome to come through my Bluetooth devices 😂 and I’d be fine with being a Chinese citizen if that’s where this leads, they have healthcare and social housing.
Well… Shit.
There are so, so, so, many ESP32’s in not just my house, but practically everyone I know.
There outta be fines for this BS.
You’re fine. This isn’t something that can be exploited over wifi. You literally need physical access to the device to exploit it as it’s commands over USB that allow flashing the chip.
This is a security firm making everything sound scary because they want you to buy their testing device.
You literally need physical access to the device to exploit it
You don’t need physical access. Read the article. The researcher used physical USB to discover that the Bluetooth firmware has backdoors. It doesn’t require physical access to exploit.
It’s Bluetooth that’s vulnerable.
The rebuttal wasn’t as comforting as some are making it out to be. They seem to be more interested in the semantics of it not being a backdoor tied to a specific product, which appears to be true.
Rather it is a potential for vulnerability that exists in all wireless implementation, which seems to me to be a bigger issue.
It’s a vulnerability where an attacker already needs code execution on the device/physical access.
If you have that you’re already compromised no matter what.
The biggest risk would be IoT devices.
That’s just the summary of the entire existence of IoT devices
The issue is where the undocumented commands are. They aren’t just allowing any old external person to send payloads to this.
It’s kind of like noticing that someone unexpectedly hid a spare key next to the door… On the inside of the house. Like, sure, maybe the owner would have like to know about that key, but since you have to be inside the house to get to it, it doesn’t really make a difference.
The Chinese adding back doors into their software/hardware.
Say it ain’t so!
Like a PRISM for China, is every powerful country just backdooring each other?
Thats hot.
The ESP32 chip, developed by Espressif Systems, is widely used in various IoT (Internet of Things), embedded systems, and consumer electronics due to its low power consumption, built-in Wi-Fi & Bluetooth, and high processing capability.
Devices That Use the ESP32 Chip
- Development Boards & Microcontrollers
ESP32 DevKit series (official Espressif boards)
M5Stack and M5Stick series
Adafruit HUZZAH32
SparkFun ESP32 Thing
LilyGO T-Series (T-Display, T-SIM, T-Watch, etc.)
WEMOS Lolin D32/D32 Pro
- Smart Home & IoT Devices
Sonoff Smart Switches and Plugs (e.g., Sonoff Mini R3, Sonoff S31)
Shelly Smart Relays (e.g., Shelly 1, Shelly 2.5)
Tuya-Based Smart Devices (many smart home products use Tuya firmware on ESP32)
Air quality monitors (e.g., AirGradient open-source air sensors)
IoT Sensor Hubs (various DIY and commercial solutions)
- Wearables & Portable Devices
TTGO T-Watch (ESP32-based smartwatch)
Heltec WiFi Kit Series (LoRa-enabled IoT devices)
Fitness trackers (some DIY and prototype models)
- Robotics & DIY Electronics
ESP32-CAM (ESP32-based camera module)
DIY drones & robots (used in hobbyist and educational robotics)
3D Printer controllers (e.g., ESP32-based Klipper controllers)
- Industrial & Commercial Products
ESP32-based vending machines (wireless payment systems)
Smart irrigation controllers
Energy monitoring devices (e.g., OpenEnergyMonitor)
Smart locks & security systems
- Audio & Multimedia Devices
ESP32-based web radios
DIY Bluetooth speakers
Smart light controllers with voice assistants
Why Is ESP32 Popular?
✔ Low-cost & powerful (dual-core, Wi-Fi, Bluetooth) ✔ Great for DIY & commercial IoT applications ✔ Strong developer community & open-source support ✔ Compatible with Arduino, MicroPython, ESP-IDF, etc.
thanks chatgpt
I wonder which IoT devices are affected, beyond DIY, that people actually use in North America.
I have a cheap wireless hygrometer in the house… I don’t know which chip gives it its capability. I just know ESP32 is the most common one.