Quest 4: Teeth of the Wind
- Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
- You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL
Link to participate: https://everybody.codes/
Python
# snipped read_input implementation data = read_input("input_p3.txt") # part 1 and 2 can be solved using a calculator # with only the first and last gears def part3(data): shafts = data.splitlines() rotations = 100 * int(shafts[0]) for shaft in shafts[1:-1]: gear1, gear2 = [int(g) for g in shaft.split('|')] rotations *= gear2 / gear1 rotations /= int(shafts[-1]) return int(rotations) assert part3("""5 7|21 18|36 27|27 10|50 10|50 11""") == 6818 print(part3(data))Ohh so it was possible to use floats for this! I was “worried” that it would lead to precision errors haha so I ended up “cheating” with BigInt (Golang) to make all the multiplications first and one division at the end
Yeah, it may be possible for precision errors to accumulate in my solution but for EC the inputs are few enough that it doesn’t really matter. Maybe I got a little lucky with my input too.
deleted by creator
Uiua
Fortunately the ratios for the common gears all proved to be rational in part 3.
⌊×2025/÷⊏¯1_0[128 64 32 16 8] # ->32400 ⌈×⊙÷°⊟⊏¯1_0⊙10000000000000[128 64 32 16 8] # -> 625000000000 ⊜□⊸≠@\s "5 5|10 10|20 5" ⌊×100×⊃(÷∩⋕⊃⊣⊢|/×≡◇(/÷⊜⋕⊸≠@|)↘1↘¯1) # -> 400I liked this one!
import Control.Arrow import Control.Monad import Data.List import Data.Ratio simpleTrain = uncurry (%) . (head &&& last) . map read compoundTrain input = let a = read $ head input z = read $ last input gs = map ( uncurry (%) . (read *** read . tail) . break (== '|') ) $ (tail . init) input in foldl' (/) (a % z) gs part1, part2, part3 :: [String] -> Integer part1 = floor . (2025 *) . simpleTrain part2 = ceiling . (10000000000000 /) . simpleTrain part3 = floor . (100 *) . compoundTrain main = forM_ [ ("everybody_codes_e2025_q04_p1.txt", part1), ("everybody_codes_e2025_q04_p2.txt", part2), ("everybody_codes_e2025_q04_p3.txt", part3) ] $ \(input, solve) -> readFile input >>= print . solve . linesmaaath
Scheme/Guile
(import (rnrs io ports (6))) (define (parse-file file-name) (map string->number (string-split (call-with-input-file file-name get-string-all) #\newline))) (let* ((gears (parse-file "notes/everybody_codes_e2025_q04_p1.txt"))) (format #t "P1 Answer: ~a\n\n" (* 2025 (/ (car gears) (car (last-pair gears)))))) (let* ((gears (parse-file "notes/everybody_codes_e2025_q04_p2.txt"))) (format #t "P2 Answer: ~a\n\n" (ceiling (* 10000000000000 (/ (car (last-pair gears)) (car gears)))))) (define (parse-file-p3 file-name) (map (lambda (line) (map string->number(string-split line #\|))) (string-split (call-with-input-file file-name get-string-all) #\newline))) (let* ((gears (parse-file-p3 "notes/everybody_codes_e2025_q04_p3.txt"))) (format #t "P2 Answer: ~a\n\n" (floor (* 100 (apply * (map (lambda (gear) (if (= 1 (length gear)) 1 (/ (cadr gear) (car gear)))) gears)) (/ (caar gears) (caar (last-pair gears)))))))In 1980 we didn’t have tuple or set or vector types. We addressed elements of our cons-based data structures with nonsense incantations like
caddarand we liked it that way.(ql:quickload :cl-ppcre) (defun read-inputs (filename) (mapcar #'parse-integer (uiop:read-file-lines filename))) (defun main-1 (filename) (let ((gears (read-inputs filename))) (truncate (* 2025 (/ (first gears) (car (last gears))))))) (defun main-2 (filename) (let ((gears (read-inputs filename))) (ceiling (* 10000000000000 (/ (car (last gears)) (first gears)))))) (defun read-inputs-3 (filename) (flet ((parse-line (line) (or (ppcre:register-groups-bind (a b) ("^([0-9]+)[|]([0-9]+)$" line) (cons (parse-integer a) (parse-integer b))) (let ((a (parse-integer line))) (cons a a))))) (mapcar #'parse-line (uiop:read-file-lines filename)))) (defun gear-ratio-3 (gears) (labels ((iter (gears ratio) (if (< (length gears) 2) ratio (let ((out-gear (cdar gears)) (in-gear (caadr gears))) (iter (cdr gears) (* ratio (/ out-gear in-gear))))))) (iter gears 1))) (defun main-3 (filename) (let ((gears (read-inputs-3 filename))) (truncate (* 100 (gear-ratio-3 gears)))))Rust
use num::{BigInt, Integer}; pub fn solve_part_1(input: &str) -> String { let gears: Vec<i64> = input.trim().lines().map(|g| g.parse().unwrap()).collect(); (2025 * gears[0] / gears.last().unwrap()).to_string() } pub fn solve_part_2(input: &str) -> String { let gears: Vec<i64> = input.trim().lines().map(|g| g.parse().unwrap()).collect(); let res = (BigInt::parse_bytes(b"10000000000000", 10).unwrap() * gears.last().unwrap()) .div_ceil(&(BigInt::ZERO + gears[0])); res.to_string() } pub fn solve_part_3(input: &str) -> String { let mut lines = input.trim().lines(); let first_gear = BigInt::parse_bytes(lines.next().unwrap().as_bytes(), 10).unwrap(); let mut nominator: BigInt = first_gear * 100; let mut denominator: BigInt = BigInt::ZERO + 1; for line in lines { let mut split = line.split("|"); denominator *= BigInt::parse_bytes(split.next().unwrap().as_bytes(), 10).unwrap(); match split.next() { Some(size) => { nominator *= BigInt::parse_bytes(size.as_bytes(), 10).unwrap(); } None => { break; } } } (nominator / denominator).to_string() }Nim
For part 3 I parse gears as tuples, with regular gears having same value on both ends e.g.
3|5 -> (3, 5) 3 -> (3, 3)proc parseGears(input: string): seq[int] = for line in input.splitLines(): result.add parseInt(line) proc parseNestedGears(input: string): seq[(int, int)] = for line in input.splitLines(): let nested = line.split('|').mapIt(it.parseInt) result.add: if nested.len == 1: (nested[0], nested[0]) else: (nested[0], nested[1]) proc solve_part1*(input: string): Solution = let gears = parseGears(input) result := 2025 * gears[0] div gears[^1] proc solve_part2*(input: string): Solution = let gears = parseGears(input) result := ceil(10000000000000'f64 / (gears[0] / gears[^1])).int proc solve_part3*(input: string): Solution = let gears = parseNestedGears(input) let ratios = (0..gears.high-1).mapIt(gears[it][1] / gears[it+1][0]) result := int(100 * ratios.prod)Full solution at Codeberg: solution.nim





